In low protein diets, microRNA-19b regulates urea synthesis by targeting SIRT5

نویسندگان

  • Rui-Ping Sun
  • Qian-Yun Xi
  • Jia-Jie Sun
  • Xiao Cheng
  • Yan-Ling Zhu
  • Ding-Ze Ye
  • Ting Chen
  • Li-Min Wei
  • Rui-Song Ye
  • Qing-Yan Jiang
  • Yong-Liang Zhang
چکیده

Ammonia detoxification, which takes place via the hepatic urea cycle, is essential for nitrogen homeostasis and physiological well-being. It has been reported that a reduction in dietary protein reduces urea nitrogen. MicroRNAs (miRNAs) are major regulatory non-coding RNAs that have significant effects on several metabolic pathways; however, little is known on whether miRNAs regulate hepatic urea synthesis. The objective of this study was to assess the miRNA expression profile in a low protein diet and identify miRNAs involved in the regulation of the hepatic urea cycle using a porcine model. Weaned 28-days old piglets were fed a corn-soybean normal protein diet (NP) or a corn-soybean low protein diet (LP) for 30 d. Hepatic and blood samples were collected, and the miRNA expression profile was assessed by sequencing and qRT-PCR. Furthermore, we evaluated the possible role of miR-19b in urea synthesis regulation. There were 25 differentially expressed miRNAs between the NP and LP groups. Six of these miRNAs were predicted to be involved in urea cycle metabolism. MiR-19b negatively regulated urea synthesis by targeting SIRT5, which is a positive regulator of CPS1, the rate limiting enzyme in the urea cycle. Our study presented a novel explanation of ureagenesis regulation by miRNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-19b regulates hTERT mRNA expression through targeting PITX1 mRNA in melanoma cells

Human telomerase reverse transcriptase (hTERT) plays a crucial role in cancer development. We previously identified paired-like homeodomain1 (PITX1) as an hTERT suppressor gene. However, the underlying mechanisms that are involved in the regulation of PITX1 remain unknown. Here, we report that the microRNA-19b (miR-19b) regulates hTERT expression and cell proliferation through inhibition of PIT...

متن کامل

SIRT5 Deacetylates Carbamoyl Phosphate Synthetase 1 and Regulates the Urea Cycle

Sirtuins are NAD-dependent protein deacetylases that connect metabolism and aging. In mammals, there are seven sirtuins (SIRT1-7), three of which are associated with mitochondria. Here, we show that SIRT5 localizes in the mitochondrial matrix and interacts with carbamoyl phosphate synthetase 1 (CPS1), an enzyme, catalyzing the initial step of the urea cycle for ammonia detoxification and dispos...

متن کامل

MicroRNA-297a regulates vascular calcification by targeting fibroblast growth factor 23

Objective(s): Vascular calcification is one the major characteristics in patients with various types of chronic inflammatory disorders. MiRNAs have been shown to be involved in many normal biological functions as well as diseases; however, their role in vascular calcification has not received much attention. Materials and Methods: In the current study, we built a vascular calcification rat mode...

متن کامل

Effects of microRNA-19b on airway remodeling, airway inflammation and degree of oxidative stress by targeting TSLP through the Stat3 signaling pathway in a mouse model of asthma

This study explored the effects of microRNA-19b (miR-19b) on airway remodeling, airway inflammation, and degree of oxidative stress in a mouse model of asthma. Bioinformatics analyses and dual luciferase reporter gene assays revealed that thymic stromal lymphopoietin (TSLP) is a direct target of miR-19b. An asthma model was established via ovalbumin (OVA) sensitization and challenge in 72 femal...

متن کامل

Inhibition of microRNA-19b promotes ovarian granulosa cell proliferation by targeting IGF-1 in polycystic ovary syndrome

The purpose of the present study was to investigate the functional role of microRNA (miR)-19b in polycystic ovary syndrome (PCOS) and try to elucidate its underlying mechanisms. Expression of miR‑19b and insulin‑like growth factor 1 (IGF-1) was examined in ovarian cortexes [(from 18 women with PCOS and 10 who did not have PCOS (non‑PCOS)] and KGN cells. Cell proliferation assays (cell viability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016